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Review of past work: chance-constrained DC OPF

m CIGRE '09: large unexpected fluctuations in wind power can
cause additional flows through the transmission system (grid)

Large power deviations in renewables must be balanced by
other sources, which may be far away

Flow reversals may be observed — control difficult

A solution — expand transmission capacity! Difficult
(expensive), takes a long time

m Problems already observed when renewable penetration high
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CIGRE -International Conference on Large High Voltage
Electric Systems '09

“Fluctuations” — 15-minute timespan
Due to turbulence (“storm cut-off")

Variation of the same order of magnitude as mean

Most problematic when renewable penetration starts to
exceed 20 — 30%

Many countries are getting into this regime
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DC-OPF:

min ¢(p) (a quadratic)

s.t.
B =p—d (1)
|Bii(0; — 6;)] < wj for each line ij (2)
Pé"”’ < pg < P;® for each generator g (3)
Notation:
p = vector of generations € R", d = vector of loads € R"

B € R™", (bus susceptance matrix)
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min ¢(p) (a quadratic)
s.t.
B =p—d
[Bij(6; — 0;)] < uj for each line ij

min max
Pg < pg < Pg for each bus g
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min ¢(p) (a quadratic)
s.t.
B =p—d
[Bij(6; — 0;)] < uj for each line ij

ngn < pg < Pgax for each bus g
How does OPF handle short-term fluctuations in demand (d)?
Frequency control:
m Automatic control: primary, secondary

m Generator output varies up or down proportionally to aggregate
change

How does OPF handle short-term fluctuations in renewable output?
Answer: Same mechanism, now used to handle aggregate wind power
change
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Experiment

Bonneville Power Administration data, Northwest US
m data on wind fluctuations at planned farms
m with standard OPF, 7 lines exceed limit > 8% of the time
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Line trip model

summary: exceeding limit for too long is bad, but complicated
want: "fraction time a line exceeds its limit is small”

proxy: prob(violation on line i) < € for each line i

Bent, Bienstock, Chertkov Columbia University, LANL

icient Chance Constrained Optimal Power Flow



m simple control

m aware of limits
m not too conservative

m computationally practicable
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Control

For each generator i, two parameters:
B p; = mean output
B «; = response parameter

Real-time output of generator /:
pi = P; _aizij
J
where Aw; = change in output of renewable j (from mean).
o=t
i

~ primary + secondary control
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Computing line flows

wind power at bus it uj + w;

DC approximation
mBO=p—d
+(ut+w—adccwi)
mO0=BT(p—d+u)+BT(—ae)w

m flow is a linear combination of bus power injections:

fij = 3;(6; — 6))
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Computing line flows

= 05 (B = BN (p—d+p)+ (A — 4)Tw),

A=B"(l—ae')

Given distribution of wind can calculate moments of line flows:

m Efyy=8;(B" — B)(p—d +p)

w var(fy) = s = B2 5, (A — Ao
(assuming mdependence)

m and higher moments if necessary
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Chance constraints to deterministic constraints

m chance constraint: P(f; > £">) < ¢; and P(f; < —f7) < ¢;

m from moments of fjj, can get conservative approximations using e.g.
Chebyshev's inequality
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Chance constraints to deterministic constraints

m chance constraint: P(f; > £">) < ¢; and P(f; < —f7) < ¢;

m from moments of fjj, can get conservative approximations using e.g.
Chebyshev's inequality

m for Gaussian wind, can do better, since f;; is Gaussian :

|Efi| + var(fy)o™" (1 — ) < 7
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Formulation:
Choose mean generator outputs and control to minimize expected cost,

with the probability of line overloads kept small.
min E[c(p)]
p,a

stZa,—l a>0

ieG

Bl =a,6,=0

See Y -

ieG iew ieED

fij = B0 — 0)),

B@zﬁ—l—u—d, 6,=0

s3> 05 ) ot(Bj — Bje — 6i + )
keWw

[Fil + s~ (1 —e) < £
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Formulation:
Choose mean generator outputs and control to minimize expected cost,

with the probability of line overloads kept small.
min E[c(p)]
p,a

stZa,—l a>0

ieG

Bl =a,6,=0

Zﬁ; + Z i = Z d;

ieG iew ieD

fij = B0 — 0)),

B@zﬁ—l—u—d, 6,=0

s =265 > oi(By = B — 6+ )’
keW

[Fil + s~ (1 —e) < £

A convex optimization problem.
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Big cases

Polish 2003-2004 winter peak case
m 2746 buses, 3514 branches, 8 wind sources

m 5% penetration and ¢ = .3 each source
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Big cases

Polish 2003-2004 winter peak case
m 2746 buses, 3514 branches, 8 wind sources

m 5% penetration and ¢ = .3 each source

CPLEX: the optimization problem has
m 36625 variables
m 38507 constraints, 6242 conic constraints

m 128538 nonzeros, 87 dense columns
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Big cases

CPLEX:
m total time on 16 threads = 3393 seconds
m "optimization status 6"

m solution is wildly infeasible

Gurobi:
m time: 31.1 seconds

m "Numerical trouble encountered”
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Cutting-plane method

overview

Cutting-plane algorithm:

remove all conic constraints
repeat until convergence:
solve linearly constrained problem
if no conic constraints violated: return
find separating hyperplane for maximum violation
add linear constraint to problem
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Cutting-plane method

Candidate solution violates conic constraint

10
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Cutting-plane method

Separate: find a linear constraint also violated
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Cutting-plane method

Solve again with linear constraint
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Cutting-plane method

New solution still violates conic constraint
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Cutting-plane method

Separate again
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Cutting-plane method

We might end up with many linear constraints

(2]
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Cutting-plane method

. which approximate the conic constraint

(2]
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Polish 2003-2004 case
CPLEX: “opt status 6"
Gurobi: “numerical trouble”

Example run of cutting-plane algorithm:

Iteration Max rel. error Objective
1 1.2e-1 7.0933e6

4 1.3e-3 7.0934e6

7 1.9e-3 7.0934e6

10 1.0e-4 7.0964e6

12 8.9e-7 7.0965e6

Total running time: 32.9 seconds
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Back to motivating example

BPA case
m standard OPF: cost 235603, 7 lines unsafe > 8% of the time
m CC-OPF: cost 237297, every line safe > 98% of the time
® run time = 9.5 seconds (one cutting plane!)
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Summary: Bienstock, Chertkov, Harnett 2012

m Specialized cutting-plane algorithm proves effective
m Commercial solvers do not

m Algorithm efficient even in cases with thousands of buses/lines

m Algorithm can be made robust with respect to data errors
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Summary: Bienstock, Chertkov, Harnett 2012

m Specialized cutting-plane algorithm proves effective
m Commercial solvers do not

m Algorithm efficient even in cases with thousands of buses/lines

m Algorithm can be made robust with respect to data errors

Can we handle power flows more accurately?
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Active power, lossless OPF:

min- c(p)

s.t.
> Bysin(0;—6;) = p—d;  VieB (4)
JijeL
|Bijsin(8; — 0;)] < wj for each line jj (5)
PI" < pg < PJ¥  for each generator g (6)
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From Boyd (2012): Suppose you solve the convex optimization

problem:
min > B;V(p;)
ijeL
s.t.
Z Bijpij — Z Bijpji = pi —di  VieB (7)
JijeL JieL
lpiil < min{l, u;/B;} for each line jj (8)
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From Boyd (2012): Suppose you solve the convex optimization

problem:
min > B;V(p;)
ijeL
s.t.
Z Bijpij — Z Bijpji = pi — di
JijeL JUieL

lpiil < min{l, u;/B;} for each line jj

Where for |p| < 1,
P

V(p) = / arcsin(y) dy

-1
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From Boyd (2012): Suppose you solve the convex optimization

problem:
min > B;V(p;)
ijeL
s.t.
Z Bijpij — Z Bijpji = pi —di  VieB (7)
JijeL JieL
lpiil < min{l, u;/B;} for each line jj (8)

Where for |p| < 1,
P
V(p) = / arcsin(y) dy

-1
Then: If 0; is the optimal dual for (7), p; = sin(6; — ;).
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From Boyd (2012): Suppose you solve the convex optimization

problem:
min > B;V(p;)
ijeL
s.t.
Z Bijpij — Z Bijpji = pi —di  VieB (7)
JijeL JieL
lpiil < min{l, u;/B;} for each line jj (8)

Where for |p| < 1,
P
V(p) = / arcsin(y) dy

-1
Then: If 0; is the optimal dual for (7), p; = sin(6; — ;).

How can we incorporate this methodology into OPF-type problems?
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Suppose you solve the convex optimization problem:

min c(p) + DY BiW(py) — K Bylog(sy) (9)

Pp,620 jec jeL

s.t.
> Bipi — Y Bei = pi—di  VieB (10)
JijeL JuyieLl

lpil + min{1, u;/B;}0; < min{l, u;/B;} for each line {11)

Pénin < pg < Pé"ax for each generator g

For appropriate positive constants D (small) and K (large).
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Suppose you solve the convex optimization problem:

min c(p) + DY BiW(py) — K Bylog(sy) (9)

P00 jeL jeL

s.t.
> Bipi — > Bipi = pi—di VieB (10)
JijeL JuyieLl

lpil + min{1, u;/B;}0; < min{l, u;/B;} for each line {11)

Pénin < pg < Pé"ax for each generator g

For appropriate positive constants D (small) and K (large). Theorem:

(1) The optimal pj; are approximate optimal active flows
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Suppose you solve the convex optimization problem:

m(i$n>O c(p) + D g BiV(p;) — K E Bij log(d;7) (9)
Popa0= jec jec
s.t.

> Bipy — Y Bipi = pi—di VieB (10)

JijeL JuyieLl

lpil + min{1, u;/B;}0; < min{l, u;/B;} for each line {11)

Pénin < pg < Pé"ax for each generator g

For appropriate positive constants D (small) and K (large). Theorem:

(1) The optimal pj; are approximate optimal active flows

(2) pjj =sin(0; —0;) 6 = optimal duals to (10).
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Somewhat more general: ~jj = sine of max phase difference on ij

Jmin c(p) + DY BW(ps) — K Bylog(dy)  (12)
jeL jeL
s.t.

S Bios — Y Bipi = pi—d;  VieB (13)

JijeL juyiel

lpiil + min{~ij, uj/Bi}0; < min{vij, uj/B;} for each lind1A)

Pg”"’ < pg < P for each generator g
For appropriate positive constants D (small) and K (large). Theorem:
(1) The optimal p;; are approximate optimal active flows

(2) pjj =sin(0; —0;) 6 = optimal duals to (13).
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Ongoing work:

min_c(p) + D > BiVlpy) — K D Bjlog(5y)

als ijec jec
s.t.
> Bipi — Y Bipi = pi —di  VieB
JijeL JieL
lpijl + min{l, u;/B;}é; < min{l, u;/Bj} for each line ij
Pg"'" < pg < Pgax for each generator g
m Outer envelope approximation to functions ¢, W, — log

m D — 0, K— 400 needs to be managed

m Existing methodology for logarithmic barrier algorithms can be
leveraged

m Early infeasibility detection can be important
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Dorfler, Chertkov, Bullo 2013: an approximation

min c(p)
s.t.
Z ﬂu(’&,fﬂj) = p; — d; VieB

JijeL

[9; — 9| < min{l,u;/B;} for each line ij

m The ¥ are auxiliary variables only

m In experiments, ¥; — 1J; provides a close approximation to the
lossless (active) AC power flow on each line jj

m (But does not provide phase angles)
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Incorporation into chance-constrained problem:

A combination of two ideas

m On any line ij, we replace sin(6; — 6;) with the quantity ¥; — ¥;
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Incorporation into chance-constrained problem:

A combination of two ideas

m On any line ij, we replace sin(6; — 6;) with the quantity ¥; — ¥;
m So 'sync’ constraint |sin(6; — 6;)| < ~y;; becomes |9; — ;| < ;i

m But in either case the constraint is stochastic

Chance-constrained version: P(|9; — 9| > vj) < €;

Example: €; = 107*.
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Control (again)

For each generator i, two parameters:
B p; = mean output
B (; = response parameter

Real-time output of generator i:
pi = P; _aiZAWj
j

where Aw; = change in output of renewable j (from mean).
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Control (again)

For each generator i, two parameters:
B p; = mean output
B (; = response parameter

Real-time output of generator i:
pi = P; _aiZAWj
j
where Aw; = change in output of renewable j (from mean).
et
i

So for any line U, 'l9i — ’l9j = Zk ak(f)k - dk +Mk) + Zk bkwk
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Chance-constrained, thermal and sync-aware (approximate) OPF:
Choose mean generator outputs and control to minimize expected cost,
with the probability of line overloads and phase angle excursions kept
small. (abridged)

min E[c(p)]

P,
s.t. Za;:l, a>0

ieG

Bf =«

> Bi(0i =) =i+ i — di

jeL

P(ﬂu|’l9| — 19]| > U,'j) <€ for each line Ij

P(|9 — 9| > vij) <e for each line ij

P(pg < Pg’"” or P < pg) < €3 for each generator g

eakKaleqg
Again: a conic optimization problem
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Summary of computational experiments

On Polish grid example (approximately 3000 buses, 388 generators
and 3799 lines), cutting-plane algorithm converges within 5-30
seconds and 2-30 iterations on a current computer

Algorithm 'discovers’ at-risk lines

Fairly smooth convergence with decreased risk as the generation
dispatch and control parameters are improved

Geographical patterns of at-risk lines exposed
Standard OPF produces poor solutions — risky and expensive

See paper!
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